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1. Introduction 
The solitary wave is a well-known example of a flow of permanent type which 

can be studied by shallow-water theory. A scheme due to K. 0. Friedrichs 
(see Friedrichs & Hyers 1954) can give both an approximation to the exact wave 
form and a framework for a proof of its existence. It is used here to approximate 
the solution of a related problem, that of a steady flow near the critical speed over 
a small obstacle in the bed of a stream. The flow can be considered as a perturba- 
tion of a solitary wave since it will approach a solitary wave as the obstacle 
shrinks in height. 

A similar problem, that of the motion of a vortex under the surface of a fluid. 
was solved recently by Filippov (1960). He used the Friedrichs scheme to obtain 
an approximate solution, and a modification of the Friedrichs-Hyers argument 
to prove existence. His solution approaches the solitary wave as the vortex 
strength diminishes. 

In  the present problem, the bottom is assumed to be flat up to the point a t  
which the obstacle occurs. Since a flow of permanent type is being studied, the 
water can be assumed to be moving under a fixed surface. This surface is approxi- 
mated by a solitary wave upstream. Downstream, the approximating surface 
is in general periodic. However, for each sufficiently small obstacle, there is an 
exceptional flow which is non-periodic downstream. This flow can be described 
as two solitary waves pieced together with a distortion in the neighbourhood of 
the obstacle. It is referred to here as a piece-wise solitary wave. 

By a preliminary normalization, the velocity of the flow far upstream (at 
x = - 03) is unity. In  addition, the depth of the water there is the unit of length. 
The dimensionless variable z = x + i y  is defined relative to a co-ordinate system 
with the x-axis parallel to the flat portion of the bottom, the y-axis oriented 
toward the surface, and the origin a t  the point at which the flow first meets the 
obstacle. The complex velocity potential is denoted by x = 4 + i@. The free 
surface corresponds to @ = 1, the bottom to @ = 0. At the free surface we have the 
Bernoulli boundary condition 

+ Iw(2+yy = const. at @ = 1, (1.1) 
where y = gh/U2, g is the acceleration of gravity, h is the depth far upstream 
before normalization, U is the velocity far upstream before normalization, and 
w is the complex velocity u - iv. All flows considered here are supercritical, that 
is, y is less than unity. At the bottom, the normal component of the velocity is 
zero. Upstream, we have the condition 

w - + l  as x+--oo. (1.2) 
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The downstream condition will depend on the obstacle and will be discussed 
later. 

It is convenient to replace the variable w by the pair of real harmonic functions 
8 and r defined by 

where IwI = exp (7-u2), 8 = -arg w, y = exp (- 3a2). 

in the strip 0 < $ < 1, - co < $ < + 00. It is required that (from (1.2)) 

w = exp [ -i{8 + i(r - a”}], (1.3) 

The functions 8 and i- are to be solutions to the Cauchy-Riemann equations 

8+0, 7 + a  as $-+-a. 
The surface condition is 

(1.4) 

88/a$ = exp ( - 37) sin 8 at 9 = 1. (1.5) 

This is derived by differentiating the Bernoulli equation (1.1) with respect to $ 
(see ch. 10 of Stoker 1957). 

If 8 and r exist and are suitably bounded, then the potential function x(z) 
maps the portion of the physical plane (the z-plane) containing the flow simply 
and conformally onto the strip bounded by $ = 0 and $ = 1 in the X-plane. The 
inverse mapping function 

can be used once we have solved for the velocity function w(x) (see ch. 12 of 
Stoker 1957). 

The normal component of the velocity must vanish along the bottom. There- 
fore if y = &(z) is the equation of the bottom, then 

tan 8{z, &(z)} = d&(z)/dz (-00 < z < co). (1.7) 

Although this condition does not easily transform to the X-plane, the following 
iterative procedure can be used: f i s t  take as a boundary condition 

OD($, 0) = fD( (Q)  = t a r 1  [d&($) /dx];  (1.8) 

solve the boundary value problem to get 

now solve the problem using 

8’ = f’($) = tan-’d&[z’($, O)]/dz, (1.10) 

etc. The proof of the convergence of this procedure requires knowledge of the 
dependence of i- on the boundary-function f. Within the framework of an approxi- 
mate theory, the following can be stated. If the expansion of r and 8 given in 
the next section is truncated, and if the resulting approximations to r and 8 are 
used in the iterative procedure, then convergence can be demonstrated. This is 
outlined in Fj 5. 
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2. The expansion procedure 
The Friedrichs procedure is to stretch the horizontal variable and expand the 

unknowns r and 0 in powers of the stretching parameter. In  the present problem 
the number y is less than but close to unity, i.e. the supercritical flow is near the 
critical speed. The stretching parameter is taken to be 

Let 

a = ( - %  log y ) k  

$ = a $ ,  ll.=ll., 
- - 

7(7/a, $1 = 5 azn72n(g, P), 
n= 1 

_ -  m 

e($Ia, F) = C a2n+18Zn+l($, ll.1 (2.2) 
n= 1 

(omitting terms which can be shown to be zero). The function f is assumed to 

have the expansion m 

f(7I.I = C aZn+lf2n+1($)* (2.3) 
n= 2 

(In the following, the ' -' will be omitted.) 
The Cauchy-Riemann equations become 

aslap = -a  a+$, aria+ = a aslag. 

or 

At @ = 0, we have from (2.3) and (1.8) that 

Let 

If thej,, are known, then it follows from (2.6) that OZnfl and r2% are completely 
determined. For example 

(2.9) 

(2.10) 

1 
7, = j,, e3 = -ll.jL 
T4 = - l $ Z ' "  2 3 2  + j 4 ,  '35 = (?b3/3!)f[ - $$ +f5, 

7 6  = (~/4!)j~4'-~ll.r2jpN+ll.f~+j6, 

8, = - ( l l .6 /5!)j~5)+(l l .3/3!)j~-811.~~-$jl i+f7.  

The ordinary differential equations which are satisfied by the jzn are found by 
inserting the expansions for 7 and 8 into the surface condition (1.6). It can be 
written as 

or (with r' = a+$ at $ = 1) 

-aexp(3r)ar/a$ = sin8 (I++ = l), 

where 

a, 

n=3 
r' + 377' + 8/a = G = aZng,,($), 

G = (sin @ - @)/a + r'[exp (37) - 1 - 371. 

(2.11) 
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It follows that at $ = 1, 

7; + 8, = 0, 

7; + 8, + 37,7; = 0, 

7; + 8, + 3 ( 4  + 7, 7;) = - $7, 7;, (2.12) 

It is important that g,, is formed from the 72k, 7&, and 82k+l, where 1 < k < n - 2. 
We now have 

Since at $ = 1, 
7, = j 2 ,  8, = -3C-j;. 

7; + 8, = - ijj: = j ;  + +j: - j ;  +f5, 

j r  = 9j2ji + 3f5, we have 

(2.13) 

(2.14) 

(2.15) 

the differential equation which determines the dominant term in the expansion 
of 7. 

7; + 8, = 4jh5) + *f5” +f,, (2.16) 

or j: = 9j,jg + h,, (2.17) 

We also have 

g .I .n 
where h, =f,+~f5”+~j2j~-~jjzj~-23232+~j%). 

These calculations were carried through in detail to illustrate the fact (which 
can be proved by induction) that in the expression 7;,+, + 82n+3, the j;,+, term 
cancels. We therefore obtain a linear differential equation for j,,, namely 

jrfi = 9,2jin+h2, (n 2 2), (2.18) 

where h,, is a polynomial in jhr) (k < n) and the derivatives of the known func- 
tions f2m+l.  

In  the next two sections, the equations forj, andj,, will be studied. It will be 
shown that the presence of the obstacle determines the character of j,. Using 
j,, a function class is defined, and it is shown that the linear differential equations 
for j,, (n > l), have unique solutions in this class. This implies that the terms 
in the formal expansions for 8 and 7 can be calculated. 

3. The dominant term,j, 
The function j ,  satisfies the differential equation (omitting subscripts) 

3’’’’ = 9jj’ + 3f, 
with the boundary conditions 

j (  -a) = 1, j ’ (  -00) = j ” (  -a) = 0. (3.2) 

(3.3) 

The function f = dF/d#, with F = 0 outside the interval 0 < q5 < A .  We in- 
tegrate (3.1) to obtain j” = $( jz  - 1) + 3F. 

It is helpful to interpret the differential equation (3.3) as one governing the 
motion of a particle in a position-dependent force field subject to a time-depen- 
dent perturbation. For this purpose, j is taken as the position of the particle 
and q5 as the time. Equation (3.3) can be written as the derivative of the energy, E ,  

E‘ = [ j ”+  V( j ) ] ’  = 6j‘F, (3.4) 
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where the potential energy function is given by 

v = 9 ( j  - ijj3). (3.5) 

Clearly E = j le  + V ( j )  = 6 [ 1 + / ! m j r ( s )  F(s)  ds] (3.6) 

The conservative part of the force which is acting on the particle is derivable 
from the potential function V .  The time rate of change of energy is equal to the 
product of the non-conservative part of the force and the velocity, j l .  If the 
non-conservative part of the force opposes the motion, the energy of the system 
decreases. It is this decrease in energy which changes the solitary wave into a 
periodic one. 

If P is identically zero, the energy is equal to six. The motion of the particle 
is described by a bounded non-periodic solution of (3.3). The particle moves from 
the left, j = 1 at q5 = - co, and reverses direction a t  j = - 2, where j 1  vanishes. 
It then returns to j = 1. This solution corresponds to the solitary wave with 
j '  vanishing at  the crest. 

Even with the obstacle present, F is zero for q5 negative. Therefore j is given 
by the solitary wave solution on ( - co, 0) ,  i.e. 

(3.7) } 
j(q5) = 1 - 3 sech2 ($4 - b)  (4 < 0) ,  

j'(q5) = 9 sech2 ($q5 - b )  tanh ($q5 - b) .  

If b is positive, the particle is moving to the left when it encounters the per- 
turbation. To oppose the motion, F must be positive. If b is negative, the particle 
has reversed its direction: F must therefore be negative. In  terms of the flow, 
b positive means the crest has not formed before the wave encounters the ob- 
stacle. To obtain periodic motion, the obstacle must be a bump, i.e. F positive. 
If b is negative, the crest has been formed, and a dip is needed for periodicity. 
We will suppose that b is positive; the analysis for b negative is similar. 

We therefore assume that F is non-negative with support? in [0 ,  A ] .  It will 
be shown that for each positive b,  there exist bounds C(b) and A(b) such that if 
the maximum value of F is less than C(b)  and if F vanishes for q5 greater than 
A(b),  thenj(q5) is periodic for q5 > A(b) .  A function F satisfying the above con- 
ditions is said to be admissible with respect to b. 

The restrictions on P are conveniently described in terms of the integrals 

Since b is positive, we have 

- 4 1 2  Q j'(0) < 0, - 2 6 j ( 0 )  < S(b)  Q 1. (3.9) 

The bound 6 can be taken i18 unity for +..he first part of the analysis. For the 
piecewise solitary wave, a sharper restriction is needed. 

A function is said to have its support in an interval if it is zero outside the interval. 
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It will be shown that A and C can be selected so that 

j(0)+j’(0)A++7-A2+3M < 6, - 2 + y A 2 + 3 M  < S. (3.10) 

Condition (3.10) implies that - 2  < j ( A )  < 6, one of the necessary conditions 
fo r j  to be bounded for $ > A .  

Propositionl. If(3.10)issatisfiedforb = b,,then - 2  6 j ($ )  < SforO < $ < A ,  
and 0 < b 6 b,. 

Proof. We first note that if j 2  < 4, then - 2 6 j < 6. This is proved by in- 
tegrating the differential equation (3.3) twice, using the bound on j, and the first 
inequality of (3.10). 

Now let 0 6 $ < A ,  6 A be the largest interval on which - 2  < j ( $ )  < 6. 
It will be shown that A ,  = A .  By the preceding paragraph, we know that j 
cannot equal 6. Therefore if A ,  < A,j ’ (A, )  6 0. But this implies thatj(A,) = - 2 
andj”(A,) > 0. Hencej‘(A,) < 0. From the energy relation (3.6) we get that 

/oA‘j’(s) F ( s )  ds > 0. (3.11) 

Sincej’(0) < 0, there must be an interval [A,, A,] on whichj‘ 6 0 andj’(A,) = 0, 
- 2 6 j (A , )  < S. Therefore V{j(Az)}  < 6, and 

/oA2j‘(s) F(s)  ds < 0, j ’ ( s )  P(s)  ds 6 0. (3.12) 1:: 
This contradicts (3.11). 

We have shown that - 2  < j ( $ )  < 6 for 0 6 $ 6 A .  That this bound holds 
uniformly in b can be shown by substituting the formulas forj(0) andj’(0) into 
(3.10). The resulting function is a cubic in tanh b whose range is bounded above 
by 6. 

The bounds onA and C implied by (3.10) do not insure that 181 6 6, for $ 2 A .  
In  fact if we take b = 0,  then if F is not identically zero, E > 6 after the per- 
turbation. This follows from the fact that if b = 0, thenj’($) > 0 for $ > 0. If 
this were not so, then at the first zero ofj‘, V > 6, and therefore the corresponding 
value of j is less than - 2; a contradiction. 

To control the size of E,  we assume that 

- 2  < j f ( 0 ) L + 3 P - z N  <j’(O)L+y-N < 0. (3.13) 

Proposition 2. If (3.13) is satisfied andj2($) 6 4, then 

- 2  6 Y j ’ ( s ) B ( s ) d s  < 0. 
J O  

Proof. j’($) =j’(0)+5/ 9 6  [j(s2)- l]ds+3/0’F(s)ds. 
0 

(3.14) 

+ ; / o A p ( t ) [ j ( s ) z -  lldsdt. (3.15) 

For the lower bound, replace j 2  by 0 ;  for the upper bound, replacej, by 4. We 
can now use the inequality (3.13). 
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It has been shown that if (3.10) and (3.13) are satisfied, then 

- 2  < j ( A )  < S and - 6  6 E < 6. (3.16) 

We conclude that for q5 > A,  j(q5) is a periodic solution of 

jl' = E(jZ- 1) .  (3.17) 

It may be represented by the elliptic integral 

i(4) 

] ( A )  
q5 - A  = 1, [E - V(j)]-& d j .  

Its period is given by - 

T ( b )  = 2 1; [E - V(j)]-* d j ,  

(3.18) 

(3.19) 

where p and q are the points of intersection of V = E and V = V(j). We have 
0 6 P < C, 0 6 q5 < A. Let B = A C ,  c = j ( O ) ,  k = j'(0). Then 

0 < L 6 B, 0 < M < QAB, 0 < N 6 QAB, 0 P 6 QB2. (3.20) 

Proposition 3. If - 2 < c < S, - 2/12 < k < 0, and if A and B satisfy 

4 1 2 B + $ A B  < 2 ,  

k+gB+2gA < 0, 

c+$'-A2 < 6, 
27A2+$AB < S + 2 ,  -z- 

then inequalities (3.10) and (3.13) are satisfied. 
Proof. If (i), then 

- 2  < JlZB-gAB 6 kL-gIV 6 kL+3P-43V. 
If (ii), then 

(3.21) 
. .- 

k L + 3 P + q N  6 k B + $ B + y A B  < 0. (3.22) 
If (ii) and (iii), then 

c + k A + y A 2 + 3 M  6 c+A(k+s$A+$B)  < c++~-A < 6. (3.23) 

$?A2+3M < S + 2 .  (3.24) 

If c < 6, and k < 0, the inequalities (i)-(iv), 0 < A,  0 < B, define a non-empty 
region in the (A ,  B)-plane. All the bounds can therefore be satisfied, and we have 

Theorem 1. If  b is positive, then there exist constants A ( b )  and C(b)  such that 
for any continuousfunctionPwith support in [0, A ( b ) ] ,  suchthat 0 6 F(q5) < C(b) ,  
there is a unique solution of (3.3) which is bounded and non-periodic for q5 < 0, 
and periodic for Q, > A. 

If (iv), then 

A piecewise solitary wave will occur if 

- 2 6 j ( A )  < 1 and j ' ( s ) F ( s )  ds = 0. (3.25) 

This effect can be produced by holding the parameter b fixed and increasing the 
perturbing function until (3.25) is satisfied. An alternative, which is used here, 
is to hold the perturbing function fixed and reduce b to the critical value. Both 

1: 
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approaches seem to require that the perturbation take place near the crest. 
This will insure that the energy is a monotonic decreasing function of b in the 
neighbourhood of the critical value. 

Theorem 2. If b, < tanh-l(,,/3/3) and if F is any non-zero function which is 
admissible with respect to b,, then there is a unique positive value of b less than 
b, such that (3.25) is satisfied. Therefore 

j(q5) = 1-3sech2($q5+g) (q5 > A ) ,  (3.26) 

where ;A + g  > 0. The flow is symmetric with respect to its crest if and only if 
F is symmetric. 

Proof. Let ~ ( q 5 , b )  = ajpb. (3.27) 

(3.28) I D” = 9jD, with D(0, b) = 6 tanh b - 6 tanh3 b, 

D’(0, b) = - 9 + 36 tanh2 b - 27 tanh4 b. 

It is easy to show that if - 2 < j < - 1, then 

D’(q5, b) d D’(0, b ) ( l  -9A2) (0 < q5 d A ) .  (3.29) 

Take 6 so that tanh26 = 3. Thenj(0,g) = - 1, D’(O,6) = 0. So if we take the 
bound S = - 1 in (3.10), we can conclude that if 0 < b < 6, - 2 < j(q5, b)  < - 1 
for 0 < 4 < A .  Since 

(3.30) 

E(b) is monotonic decreasing. 
If b, < 6, and P is admissible with respect to b,, then E(b,) < 0. Since E(b)  is 

a continuous monotonic decreasing function, and since E(0) > 0, there is a 
unique positive value of b such thatE(b) = 0. For this value of b, (3.25) is satisfied. 

The inequality $A + g  > 0 is equivalent to j ’ (A)  > 0. This second inequality 
follows from the fact that j‘ has only one zero during the perturbation. 

In  order to prove that the critical flow is symmetric if and only if the bump is 
symmetric, it  is convenient to change the perturbation interval to [ - *A, QA]. 
If P is not an even function, then from the differential equation (3.3), it  follows 
that j cannot be an even function. Now let us assume that P is even. The con- 
dition that E = 6 can be written as 

0 = j ‘ ( s )  F(s )  ds = [j’(s) +j’( - s) ]  P(s) ds. (3.31) . -&A 

Let W(s)  = j(s) -j( - s). Then 

w” = $[j(s)+j( - s ) ]  W ,  W ( 0 )  = 0,  W‘(0) = 2j’(O). (3.32) 

Clearly j is even if and only ifj’(0) = 0 (recall that s = 0 at q5 = &A). 

where 

Since - 2  < j, 
W” + 18 = K(s)  W ,  0 < K(s)  = g[j(s) +j (  -8) + 41. (3.33) 

We write 

W’(s) = l;cosr(s-t)l((t) W(t)dt+ W‘(0)sinrs (r2 = 18). (3.34) 
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If rA < n-, then W'(0) > 0 implies that W and W are positive on [0,  +A] .  This 
contradicts (3.32). If W'(0) < 0, we have a similar contradiction. Therefore 
W'(0) = 0,  a n d j  is an even function. Finally, we note that rA < n- is implied by 
inequality (iii) of proposition 3. 

4. The higher-order terms 
It was stated in 3 2 that 

j i n  = gj2 jgn+h2,  (n 2 2), (4.1) 

where h,, is a polynomial inj21c, f2k+l  (k < n)  and their derivatives. It will now 
be shown that the downstream behaviour of jzn is determined by j,. 

Let us first consider the piece-wise solitary wave produced by a non-zero 
perturbation. Let B, = {h} = the class of continuous functions satisfying 

supexp ( 2  IN lh($)l < a. (4.2) 
@ 

Note that j ;  is a member of B,. 

Theorem 3. Ifj,(O) < - 1 and if h is in B,, the differential equation 

y" = 9j,y + h (4.3) 
has a unique solution in B,. 

equation 

such that U, U i  - U, U; = 1 and U, = - & j h  for $ < 0. Then if 

Proof. Let U, and U, be the two independent solutions to the homogeneous 

(4.4) Y" = 9j2y 

} (4.5) 
u2(q5) = 5 sech2 (84 - b) tanh (zq5 - b) ,  

u,($) = &u2(q5) sinh (6q5 - 4b) +a calculable bounded function, 

it can be shown that U, = u1 and U, = u, for q5 < 0. Note that u, is in B,, but u1 
is not. After the perturbation, j ,  is given by (3.26), i.e. its argument is translated 
by CT = g + b. Therefore 

ul($) = alul($ f fl) + a2u2(cb + CT)> ['2($) = + + a4u2($ + a), (4*6) 

where the constants ai satisfy ala4 -u2a3 = 1. 
It will now be shown that if y is in B,, and if y is a solution to the homogeneous 

equation (4.4), then y is identically zero. First, note that for q5 Q 0,  y must be 
a multiple of u,. We can therefore assume that y = u, for q5 < 0. Now set 

W = -  z",jh + y .  (4.7) 

w =9j,W+$f, W ( 0 )  = W'(0) = 0. (4.8) 

W'(q5) = 9 j ( s )  W(s)ds+$F(+), (4.9) 

Using the differential equation satisfied by j,, (3.3), we have 

so" Therefore 

where F' = f .  Since F ( A )  = 0 ,  W 2 0 implies that W'(A)  < 0 (W cannot be 
identically zero since f is not). This implies that y is not in B,, for if y is in B,, 
then y = cu(q5,+u) for q5 2 A .  Therefore W($)  = (c-$)u2($+@, q5 

(4.10) 

A ,  or 

W ( A )  = - &(c -$)&(A),  W'(A) = -&(c - +)A(A) .  
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Since j , (A)  < - 1, j&4) > 0. Furthermore j; > 0. Therefore W ( A )  W ’ ( A )  > 0. 
This contradicts the fact that W > 0 implies W ’ ( A )  < 0. 

To complete the uniqueness argument, we must show that W 2 0 on [O,A]. 
Let k($) = 9j,($)+ 18, r = 418. Then 

W ( $ )  = i/o’sinr($-t)E(t) W(t )d t+  - sinr($-t)f(t)dt. 

Since F(0)  = 0, the second integral can be integrated by parts to give 

(4.11) 9”, Io’ 
W(q5) = A/’sinr($ - t )  k ( t )  W(t)  dt cosr(q5- t )  F( t )  dt. (4.12) 

Y o  

It follows from the inequalities rA < 4;. and F > 0 that this integral equation 
has a non-negative solution. This completes the uniqueness argument. 

We return to the analysis of the inhomogeneous equation (4.3). Its solution 
can be written 

It is easy to check that h in B, implies sup ec2+ ly($)l < 00 for # < 0. The corre- 
sponding condition for positive $ will determine the constant m. 

If q5 > A ,  then equations (4.6) can be substitutedinto (4.8). Using the equation 
a,a,-a,a3 = 1, we get 

Since a3 = 0 violates the uniqueness argument, there is no difficulty in choosing 
m so that 31 = 0. This implies that y is in B,, which was to be shown. 

The characterization of jzn in terms ofj, whenj, is periodic for $ > A is helped 
by a translation in the independent variable. The new origin is taken to be the 
second zero ofj;l($), $ 2 A .  With this new origin, we can say thatj;l is locally odd, 
that is 

(4.15) 

where T is the period of j,. The function class B, to which j ;  belongs can be 
defined as the class of continuous functions h such that 

(4.16) I (i) supe21 Ih(t)l < co ( t  < O ) ,  

(ii) h(t + T) = h(t)  (t > - +T), 
(iii) h is locally odd. 

As in theorem 3, equation (4.1) has a unique solution in B, if h is in B,. The 
proof uses the analysis of Littman (1957) of the unperhrbed periodic flow. He 
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showed that the solutions to the unperturbed homogeneous equations have the 
following properties: u2 has period T but u, does not, and u, is locally even while 
u2 is locally odd. The uniqueness argument is as in theorem 3. The existence 
argument selects the constant m so that y is periodic after the perturbation. 
Note that if y is in B, then 

P 
Y($)  = Y ( t )  dt 

is periodic for $ > A ,  and Y is bounded for all $. If y is in B,, we can also conclude 
that Y is bounded. 

It has not yet been shown thatj; in Bi implies that h,, is in Bi, i = 1, 2. This 
follows from the fact that in the expansion of the function C in equation (2.11) 
of $2,  both 02k+l  and 7 ; k  are in Bi, and i-2k is bounded. 

5. The dependence of r onf 
Let r be approximated along @ = 0 by 

r z a2jz+a4j4, (5.1) 

and let 7" be the unperturbed function. The difference between T and .7 will now 
~ 

be estimated. If we set W, = j 2 - j , ,  then 

r i  + 18K = $(j2 +j2 + 4) w, + 3F5, K(0) = w;(o) = 0. 

Using an integral equation similar to (4.11), we conclude that 

where Ihl = max lh($)l (0 < $ < A ) ;  

Therefore if 3rA < T, 

This bound can be used in the integral equation satisfied by W' to give 

I41 6 IKl +a W 5 L  

a = 2(1-cosrA), S = A/r .  

IW,l < P, 13F51, Po = 8 / (1 -~ ) .  

IwLl < pl 1 3 q ,  pl = A(36po+ 1). 

Using the bounds on W and W', we get 

1wrl"'I < pk113F511 (0  < k < 5 ) ,  

where llhll = max Ih(m)l ( 1  < m < 5 ,  Pk = constant). 

Now let W, = j; -j;, then 

W; + 18K = g( j ,+  2) K+ 9K+ h,- n4. 
Itcl < po(9po 13277 + lhd-i4]). Therefore 

It is straightforward to estimate I h, - i,l (see the explicit formula following 
(2.17)) to get 

Consequently 17-7 6 4 Ilfll. (5.10) 

This estimate could be obtained for a higher-order approximation to r, but 
this will not be done here. A standard argument can now be employed to prove 
the convergence of the iterative procedure of 5 1. 

(5.9) IKl 6 ~smax[Ilf5ll, lf711. 
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